首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65298篇
  免费   10072篇
  国内免费   5664篇
电工技术   8659篇
技术理论   2篇
综合类   6631篇
化学工业   5169篇
金属工艺   2254篇
机械仪表   6650篇
建筑科学   3086篇
矿业工程   2190篇
能源动力   3163篇
轻工业   3326篇
水利工程   1780篇
石油天然气   3346篇
武器工业   1110篇
无线电   6020篇
一般工业技术   5613篇
冶金工业   1892篇
原子能技术   487篇
自动化技术   19656篇
  2024年   241篇
  2023年   1487篇
  2022年   2715篇
  2021年   2886篇
  2020年   3123篇
  2019年   2669篇
  2018年   2418篇
  2017年   2946篇
  2016年   3306篇
  2015年   3701篇
  2014年   5190篇
  2013年   4908篇
  2012年   5659篇
  2011年   5743篇
  2010年   3948篇
  2009年   4142篇
  2008年   3710篇
  2007年   4171篇
  2006年   3455篇
  2005年   2779篇
  2004年   2249篇
  2003年   1820篇
  2002年   1526篇
  2001年   1195篇
  2000年   959篇
  1999年   663篇
  1998年   618篇
  1997年   511篇
  1996年   413篇
  1995年   393篇
  1994年   308篇
  1993年   239篇
  1992年   191篇
  1991年   167篇
  1990年   139篇
  1989年   116篇
  1988年   78篇
  1987年   29篇
  1986年   30篇
  1985年   25篇
  1984年   24篇
  1983年   19篇
  1982年   21篇
  1981年   17篇
  1980年   19篇
  1979年   14篇
  1978年   9篇
  1977年   10篇
  1959年   5篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Reducing the Platinum (Pt) loading while maintaining the performance is highly desired for promoting the commercial use of proton exchange membrane fuel cells (PEMFCs). Different methods have been adopted to fabricate catalyst layers (CLs) with low Pt loading, including utilizing lower Pt/C catalysts (MA), mixing high Pt/C catalysts with bare carbon black particles (MB), and reducing CL thickness while maintaining high Pt/C ratio (MC). In this study, self-developed pore-scale model is adopted to investigate the performance of the three Pt reduction methods. It is found that MA shows the best performance while MB shows the worst. Then, effects of Pt dispersion are further explored. The results show that denser Pt sites will result in higher local oxygen flux and thus higher local transport resistance. Therefore, MA method, which shows the better Pt dispersion, leads to improved performance. Third, CLs with quasi-realistic structures are investigated. Higher tortuosity resulting from the random pores produces higher bulk resistance along the thickness direction, while MA still exhibits the best performance. Finally, improved CL structures are investigated by designing perforated CL structures. It is found that adding perforations can significantly reduce the bulk transport resistance and can improve the CL performance. It is demonstrated that CL structure plays important roles on performance, and there are still huge potentials to further improve CL performance by increasing Pt dispersion and optimizing CL structures.  相似文献   
102.
A dual-reflux pressure swing adsorption (DR-PSA) process was proposed and simulated to initially separate the blue coal gas, aiming to capture carbon dioxide (CO2) and enrich hydrogen (H2), simultaneously. With a feed flow rate of 7.290 slpm, a light product reflux flow rate of 0.505 slpm and the heavy product reflux flow rate of 3.68 slpm, the developed DR-PSA process could capture CO2 up to 64.01% with a recovery of 99.60% and enrich H2 up to 34.66% with a recovery of 97.63% from the blue coal gas (36.2% N2/28.5% H2/13.9% CO/12.7% CO2/8.7% CH4). In addition, in order to optimize the process, the effects of various operating parameters on the DR-PSA process performance in terms of product purity and recovery were discussed in detail, including the feed position, the light product reflux ratio and the heavy product reflux ratio. Moreover, the dynamic distribution behaviors of pressure, temperature and gas-solid concentration were presented to explain and evaluate the process separation performance in depth under different operating conditions.  相似文献   
103.
People in the Middle East are facing the problem of freshwater shortages. This problem is more intense for a remote region, which has no access to the power grid. The use of seawater desalination technology integrated with the generated energy unit by renewable energy sources could help overcome this problem. In this study, we refer a seawater reverse osmosis desalination (SWROD) plant with a capacity of 1.5 m3/h used on Larak Island, Iran. Moreover, for producing fresh water and meet the load demand of the SWROD plant, three different stand‐alone hybrid renewable energy systems (SAHRES), namely wind turbine (WT)/photovoltaic (PV)/battery bank storage (BBS), PV/BBS, and WT/BBS are modeled and investigated. The optimization problem was coded in MATLAB software. Furthermore, the optimized results were obtained by the division algorithm (DA). The DA has been developed to solve the sizing problem of three SAHRES configurations by considering the object function's constraints. These results show that this improved algorithm has been simpler, more precise, faster, and more flexible than a genetic algorithm (GA) in solving problems. Moreover, the minimum total life cycle cost (TLCC = 243 763$), with minimum loss of power supply probability (LPSP = 0%) and maximum reliability, was related to the WT/PV/BBS configuration. WT/PV/BBS is also the best configuration to use less battery as a backup unit (69 units). The batteries in this configuration have a longer life cycle (maximum average of annual battery charge level) than two other configurations (93.86%). Moreover, the optimized results have shown that utilizing the configuration of WT/PV/BBS could lead to attaining a cost‐effective and green (without environmental pollution) SAHRES, with high reliability for remote areas, with appropriate potential of wind and solar irradiance.  相似文献   
104.
The current work introduces an enhancement in the performance of the microbial fuel cell through estimating the optimal set of controlling parameters. The maximization of both power density (PD) and the percentage of chemical oxygen demand (COD) removal were considered as the enhancement in the cell's performance. Three main parameters in terms of performance as well as commercialization are the system's inputs; the Pt which takes the range of 0.1‐0.5 mg/cm2, the degree of sulphonation in sulfonated‐poly‐ether‐ether‐ketone that changes in the range of 20‐80%, and the rate of aeration of cathode which varies between 10 and 150 mL/min. From the experimental dataset, two robust adaptive neuro‐fuzzy inference system models based on the fuzzy logic technique have been constructed. The comparisons between the models' outputs and the experimental data showed well‐fitting in both training and testing datasets. The mean squared errors of the PD model, for testing and whole datasets, were found 2.575 and 0.909 while for the COD model it showed 19.242 and 6.791, respectively. Then, based on the two fuzzy models, a Particle Swarm Optimization algorithm has been used to determine the best parameters that maximize both of the PD and the COD removal of the cell. The optimization process was utilized for single and multi‐object optimization processes. In the single optimization, the resulting maximums of the PD and the COD removal were found 62.844 (mW/m2) and 99.99 (%), respectively. Whereas, in the multi‐object optimization, the values of 61.787 (mW/m2) and 96.21 (%) were reached as the maximums for the PD and COD, respectively. This implies that, in both cases of optimization processes, the adopted methodology can efficiently enhance the microbial fuel cell performances than the previous work.  相似文献   
105.
Current ammonia production technologies have a significant carbon footprint. In this study, we present a process synthesis and global optimization framework to discover the efficient utilization of renewable resources in ammonia production. Competing technologies are incorporated in a process superstructure where biomass, wind, and solar routes are compared with the natural gas-based reference case. A deterministic global optimization-based branch-and-bound algorithm is used to solve the resulting large-scale nonconvex mixed-integer nonlinear programming problem (MINLP). Case studies for Texas, California, and Iowa are conducted to examine the effects of different feedstock prices and availabilities. Results indicate that profitability of ammonia production is highly sensitive to feedstock and electricity prices, as well as greenhouse gas (GHG) restrictions. Under strict 75% GHG reductions, biomass to ammonia route is found to be competitive with natural gas route, whereas wind and solar to ammonia routes require further improvement to compete with those two routes. © 2018 American Institute of Chemical Engineers AIChE J, 65: e16498 2019  相似文献   
106.
This paper attempted to show the application of particle swarm optimization in the prediction of the compressive strength of cement sandy soil from the curing period, porosity of sample and percentage of cement. The results of the study show that the unconfined compressive strength of the cement stabilized sandy soil increases with an increasing cement content curing time period. Moreover the compressive strength decreases with an increasing porosity. The compressive strength improvement due to cement treatment has a larger increase in samples with less porosity. In addition, particle swarm optimization algorithm is and accurate technique in estimation of compressive strength of cement stabilized sandy soil. In order to compare of existing correlations, a total number of 100 unconfined compressive tests and 15 scanning electron microscope tests have been conducted on cemented Babolsar sand. It can be concluded that compared to existing correlations models, particle swarm optimization algorithm models give more reliable prediction about compressive strength of cement satblized sandy soil. Moreover, the sensitivity analysis of the polynomial model shows that cement content and porosity have significant impact on predicting unconfined compressive strength.  相似文献   
107.
108.
Spark is a distributed data processing framework based on memory. Memory allocation is a focus question of Spark research. A good memory allocation scheme can effectively improve the efficiency of task execution and memory resource utilization of the Spark. Aiming at the memory allocation problem in the Spark2.x version, this paper optimizes the memory allocation strategy by analyzing the Spark memory model, the existing cache replacement algorithms and the memory allocation methods, which is on the basis of minimizing the storage area and allocating the execution area according to the demand. It mainly including two parts: cache replacement optimization and memory allocation optimization. Firstly, in the storage area, the cache replacement algorithm is optimized according to the characteristics of RDD Partition, which is combined with PCA dimension. In this section, the four features of RDD Partition are selected. When the RDD cache is replaced, only two most important features are selected by PCA dimension reduction method each time, thereby ensuring the generalization of the cache replacement strategy. Secondly, the memory allocation strategy of the execution area is optimized according to the memory requirement of Task and the memory space of storage area. In this paper, a series of experiments in Spark on Yarn mode are carried out to verify the effectiveness of the optimization algorithm and improve the cluster performance.  相似文献   
109.
Differential evolution is primarily designed and used to solve continuous optimization problems. Therefore, it has not been widely considered as applicable for real-world problems that are characterized by permutation-based combinatorial domains. Many algorithms for solving discrete problems using differential evolution have been proposed, some of which have achieved promising results. However, to enhance their performance, they require improvements in many aspects, such as their convergence speeds, computational times and capabilities to solve large discrete problems. In this paper, we present a new mapping method that may be used with differential evolution to solve combinatorial optimization problems. This paper focuses specifically on the mapping component and its effect on the performance of differential evolution. Our method maps continuous variables to discrete ones, while at the same time, it directs the discrete solutions produced towards optimality, by using the best solution in each generation as a guide. To judge its performance, its solutions for instances of well-known discrete problems, namely: 0/1 knapsack, traveling salesman and traveling thief problems, are compared with those obtained by 8 other state-of-the-art mapping techniques. To do this, all mapping techniques are used with the same differential evolution settings. The results demonstrated that our technique significantly outperforms the other mapping methods in terms of the average error from the best-known solution for the traveling salesman problems, and achieves promising results for both the 0/1 knapsack and the traveling thief problems.  相似文献   
110.
在过去几十年里,许多多目标进化算法被广泛应用于解决多目标优化问题,其中一种比较流行的多目标进化算法是基于分解的多目标进化算法(MOEA/D)。花朵授粉算法是一种启发式优化算法,但迄今为止,花朵授粉算法在基于分解的多目标进化算法领域的研究还非常少。本文在基于分解的多目标进化算法的框架下,将花朵授粉算法拓展至多目标优化领域,提出一种基于分解的多目标花朵授粉算法(MOFPA/D)。此外,为了保证非支配解的多样性,本文提出一种基于网格的目标空间分割法,该方法从找到的Pareto最优解集中筛选出一定数量且分布均匀的Pareto最优解。实验结果表明,基于分解的多目标花朵授粉算法在收敛性与多样性方面均优于基于分解的多目标进化算法。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号